Главная
 
Ghost Studio Вторник, 14.05.2024, 11:49:12



Приветствую Вас Гость | RSS
Главная
Меню сайта

Категории каталога
Разное [36]
Всякая всячина)))
Программирование графики [3]
Учебник по OpenGL [6]
Программирование под Windows [8]

Наш опрос
Нужен ли сайту новый дизайн?
Всего ответов: 62

Главная » Статьи » Программирование под Windows

Алгоритмы поиска данных

Итак, пусть у нас есть текст, состоящий из n символов, который в дальнейшем договоримся называть T, а T[i] его i-ый символ. Строку или просто слово, состоящее из m символов, назовем S, где S[i] -i-ый символ строки. Нам нужно проверить, входит ли данная строка в данный текст, и если входит, то начиная с какого символа текста. В этой статье мы рассмотрим несколько известных алгоритмов, решающих поставленную задачу.

Простейший алгоритм

Суть метода, о котором пойдет речь ниже, заключается в следующем: мы проверяем, совпадают ли m символов текста (начиная с выбранного) с символами нашей строки, пытаясь примерить шаблон куда только возможно. Естественно, реализовать описанный алгоритм проще всего (код на языке Pascal):

Просто и элегантно, вроде так и надо. Действительно, это несложно в исполнении, но и не очень эффективно на практике. Давайте оценим скорость работы этой программки. В ней присутствуют два цикла (один вложенный), время работы внешнего большей степенью зависит от n, а внутренний в худшем случае делает m операций. Таким образом, время работы всего алгоритма есть O((n-m+1)m). Для маленьких строк поиск проработает быстро, но если в каком-то многомегабайтном файле вы будете искать последовательность длинной 100 Кб, то, боюсь, придется вам ждать ну очень долго. Впрочем, как я уже говорил, многим хватает и этого.

Как вы уже, наверное, поняли, основной недостаток вышеизложенного метода состоит в том, что приходится выполнять много лишней работы. Например, найдя строку aabc и обнаружив несоответствие в четвертом символе (совпало только aab), алгоритм будет продолжать сравнивать строку, начиная со следующего символа, хотя это однозначно не приведет к результату. Следующий метод работает намного быстрее простейшего, но, к сожалению, накладывает некоторые ограничения на текст и искомую строку.

Алгоритм Рабина-Карпа

Идея, предложенная Рабином и Карпом, подразумевает поставить в соответствие каждой строке некоторое уникальное число, и вместо того чтобы сравнивать сами строки, сравнивать числа, что намного быстрее. Проблема в том, что искомая строка может быть длинной, строк в тексте тоже хватает. А так как каждой строке нужно сопоставить уникальное число, то и чисел должно быть много, а стало быть, числа будут большими (порядка Dm, где D - количество различных символов), и работать с ними будет так же неудобно. Ниже вы узнаете, как найти выход из этого положения, а пока смотрите реализацию для текста, состоящего только из цифр, и строки длиной до 8 символов.

Этот алгоритм выполняет линейный проход по строке (m шагов) и линейный проход по всему тексту (n шагов), стало быть, общее время работы есть O(n+m). Это время линейно зависит от размера строки и текста, стало быть программа работает быстро. Но какой интерес работать только с короткими строками и цифрами? Разработчики алгоритма придумали, как улучшить этот алгоритм без особых потерь в скорости работы. Как вы заметили, мы ставили в соответствие строке ее числовое представление, но возникала проблема больших чисел. Ее можно избежать, если производить все арифметические действия по модулю какого-то простого числа (постоянно брать остаток от деления на это число). Таким образом, находится не само число, характеризующие строку, а его остаток от деления на некое простое число. Теперь мы ставим число в соответствие не одной строке, а целому классу, но так как классов будет довольно много (столько, сколько различных остатков от деления на это простое число), то дополнительную проверку придется производить редко.

Итак, нам все-таки приходится производить сравнение строк посимвольно, но так как «холостых» срабатываний будет немного (в 1/P случаях), то ожидаемое время работы малое. Строго говоря, время работы есть O(m+n+mn/P), mn/P достаточно невелико, так что сложность работы почти линейная. Понятно, что простое число следует выбирать большим, чем больше это число, тем быстрее будет работать программа. Этот алгоритм значительно быстрее предыдущего и вполне подходит для работы с очень длинными строками.

Еще один важный метод, о котором я хочу рассказать, - алгоритм Кнута-Морриса-Пратта, один из лучших на нынешний момент, работает за линейное время для любого текста и любой строки.

Алгоритм Кнута-Морриса-Пратта

Метод использует предобработку искомой строки, а именно: на ее основе создается так называемая префикс-функция. Суть этой функции в нахождении для каждой подстроки S[1..i] строки S наибольшей подстроки S[1..j] (j<i), присутствующей одновременно и в начале, и в конце подстроки (как префикс и как суффикс). Например, для подстроки abcHelloabc такой подстрокой является abc (одновременно и префиксом, и суффиксом). Смысл префикс-функции в том, что мы можем отбросить заведомо неверные варианты, т.е. если при поиске совпала подстрока abcHelloabc (следующий символ не совпал), то нам имеет смысл продолжать проверку продолжить поиск уже с четвертого символа (первые три и так совпадут). Вот как можно вычислить эту функцию для всех значений параметра от 1 до m:

Теперь разберемся, почему же данная процедура вычисляет префикс-функцию правильно. Используется следующая идея: если префикс (он же суффикс) строки длинной i длиннее одного символа, то он одновременно и префикс подстроки длинной i-1. Таким образом, мы проверяем префикс предыдущей подстроки, если же тот не подходит, то префикс ее префикса, и т.д. Действуя так, находим наибольший искомый префикс. Следующий вопрос, на который стоит ответить: почему время работы процедуры линейно, ведь в ней присутствует вложенный цикл? Ну, во-первых, присвоение префикс-функции происходит четко m раз, остальное время меняется переменная k. Так как в цикле while она уменьшается (P[k]<k), но не становится меньше 0, то уменьшаться она может не чаще, чем возрастать. Переменная k возрастает на 1 не более m раз. Значит, переменная k меняется всего не более 2m раз. Выходит, что время работы всей процедуры есть O(m). А сейчас мы переходим к самой программе, ищущей строку в тексте.

Доказать что эта программа работает за линейное время, можно точно так же, как и для процедуры Prefix. Стало быть, общее время работы программы есть O(n+m), т. е. линейное время.

Напоследок хочу заметить, что простейший алгоритм и алгоритм Кнута-Морриса-Пратта помимо нахождения самих строк считают, сколько символов совпало в процессе работы. И еще: алгоритм Кнута-Морриса-Пратта немногим более громоздок, чем простейший, зато работает намного быстрее. Так что делайте выводы.

P.S. Все программы проверены на работоспособность, достаточно вставить соответствующие сегменты кода вместо многоточий.

Категория: Программирование под Windows | Добавил: Buba (22.06.2007)
Просмотров: 1288 | Рейтинг: 0.0/0 |

Всего комментариев: 0
Имя *:
Email *:
Код *:
Форма входа

Поиск

Друзья сайта

Статистика


Copyright MyCorp © 2024